Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Br J Radiol ; 95(1132): 20211364, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-2241481

ABSTRACT

Functional CT of the lung has emerged from quantitative CT (qCT). Structural details extracted at multiple lung volumes offer indices of function. Additionally, single volumetric images, if acquired at standardized lung volumes and body posture, can be used to model function by employing such engineering techniques as computational fluid dynamics. With the emergence of multispectral CT imaging including dual energy from energy integrating CT scanners and multienergy binning using the newly released photon counting CT technology, function is tagged via use of contrast agents. Lung disease phenotypes have previously been lumped together by the limitations of spirometry and plethysmography. QCT and its functional embodiment have been imbedded into studies seeking to characterize chronic obstructive pulmonary disease, severe asthma, interstitial lung disease and more. Reductions in radiation dose by an order of magnitude or more have been achieved. At the same time, we have seen significant increases in spatial and density resolution along with methodologic validations of extracted metrics. Together, these have allowed attention to turn towards more mild forms of disease and younger populations. In early applications, clinical CT offered anatomic details of the lung. Functional CT offers regional measures of lung mechanics, the assessment of functional small airways disease, as well as regional ventilation-perfusion matching (V/Q) and more. This paper will focus on the use of quantitative/functional CT for the non-invasive exploration of dynamic three-dimensional functioning of the breathing lung and beating heart within the unique negative pressure intrathoracic environment of the closed chest.


Subject(s)
Lung Diseases, Interstitial , Lung , Humans , Lung/diagnostic imaging , Thorax , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/methods
2.
Eur Radiol Exp ; 4(1): 55, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1388845

ABSTRACT

We investigated whether the internal gantry components of our computed tomography (CT) scanner contain severe acute respiratory syndrome 2 (SARS-CoV-2) ribonucleic acid (RNA), bacterial or fungal agents. From 1 to 27 March 2020, we performed 180 examinations of patients with confirmed SARS-CoV-2 infection using a dedicated CT scanner. On 27 March 2020, this CT gantry was opened and sampled in each of the following components: (a) gantry case; (b) inward airflow filter; (c) gantry motor; (d) x-ray tube; (e) outflow fan; (f) fan grid; (g) detectors; and (h) x-ray tube filter. To detect SARS-CoV-2 RNA, samples were analysed using reverse transcriptase-polymerase chain reaction (RT-PCR). To detect bacterial or fungal agents, samples have been collected using "replicate organism detection and counting" contact plates of 24 cm2, containing tryptic soy agar, and subsequently cultured. RT-PCR detected SARS-CoV-2 RNA in the inward airflow filter sample. RT-PCR of remaining gantry samples did not reveal the presence of SARS-CoV-2 RNA. Neither bacterial nor fungal agents grew in the agar-based growth medium after the incubation period. Our data showed that SARS-Cov-2 RNA can be found inside the CT gantry only in the inward airflow filter. All remaining CT gantry components were devoid of SARS-CoV-2 RNA.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Equipment Contamination , Pneumonia, Viral/virology , Tomography Scanners, X-Ray Computed/virology , Tomography, X-Ray Computed/instrumentation , COVID-19 , Humans , Pandemics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2
3.
J Appl Clin Med Phys ; 21(12): 325-328, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1384081

ABSTRACT

PURPOSE: To investigate the feasibility and practicality of ultraviolet (UV) germicidal irradiation of the inner bore of a computed tomography (CT) gantry as a means of viral decontamination. METHOD: A UV lamp (PADNUT 38 W, 253 nm UV-C light tube) and UV-C dosimeter (GENERAL UV-C Digital Light Meter No. UV512C) were used to measure irradiance throughout the inner bore of a CT scanner gantry. Irradiance (units µW/cm2 ) was related to the time required to achieve 6-log viral kill (10-6 survival fraction). RESULTS: A warm-up time of ~120 s was required for the lamp to reach stable irradiance. Irradiance at the scan plane (z = 0 cm) of the CT scanner was 580.9 µW/cm2 , reducing to ~350 µW/cm2 at z = ±20 cm toward the front or back of the gantry. The angular distribution of irradiation was uniform within 10% coefficient of variation. A conservative estimate suggests at least 6-log kill (survival fraction ≤ 10-6 ) of viral RNA within ±20 cm of the scan plane with an irradiation time of 120 s from cold start. More conservatively, running the lamp for 180 s (3 min) or 300 s (5 min) from cold start is estimated to yield survival fraction <<10-7 survival fraction within ±20 cm of the scan plane. CONCLUSION: Ultraviolet irradiation of the inner bore of the CT gantry can be achieved with a simple UV-C lamp attached to the CT couch. Such practice could augment manual wipe-down procedures, improve safety for CT technologists or housekeeping staff, and could potentially reduce turnover time between scanning sessions.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Infection Control/methods , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Calibration , Decontamination/instrumentation , Diagnostic Imaging/methods , Infection Control/instrumentation , RNA, Viral/radiation effects , Radiometry , SARS-CoV-2/radiation effects , Ultraviolet Rays
4.
Diagn Interv Radiol ; 27(3): 350-353, 2021 May.
Article in English | MEDLINE | ID: covidwho-1112835

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic period, container computed tomography (CT) scanners were developed and used for the first time in China to perform CT examinations for patients with clinically mild to moderate COVID-19 who did not need to be hospitalized for comprehensive treatment, but needed to be isolated in Fangcang shelter hospitals (also known as makeshift hospitals) to receive some supportive treatment. The container CT is a multidetector CT scanner installed within a radiation-protected stand-alone container (a detachable lead shielding room) that is deployed outside the makeshift hospital buildings. The container CT approach provided various medical institutions with the solution not only for rapid CT installation and high adaptability to site environments, but also for significantly minimizing the risk of cross-infection between radiological personnel and patients during CT examination in the pandemic. In this article, we described the typical setup of a container CT and how it worked for chest CT examinations in Wuhan city, the epicenter of COVID-19 outbreak.


Subject(s)
COVID-19/diagnostic imaging , Emergency Service, Hospital , Lung/diagnostic imaging , Multidetector Computed Tomography/instrumentation , Multidetector Computed Tomography/methods , Tomography Scanners, X-Ray Computed , China , Humans , Pandemics , SARS-CoV-2
5.
Int J Environ Res Public Health ; 17(21)2020 11 05.
Article in English | MEDLINE | ID: covidwho-909164

ABSTRACT

Background: The novel Severe Acute Respiratory Syndrome Coronavirus-2 has led to a global pandemic in which case fatality rate (CFR) has varied from country to country. This study aims to identify factors that may explain the variation in CFR across countries. Methods: We identified 24 potential risk factors affecting CFR. For all countries with over 5000 reported COVID-19 cases, we used country-specific datasets from the WHO, the OECD, and the United Nations to quantify each of these factors. We examined univariable relationships of each variable with CFR, as well as correlations among predictors and potential interaction terms. Our final multivariable negative binomial model included univariable predictors of significance and all significant interaction terms. Results: Across the 39 countries under consideration, our model shows COVID-19 case fatality rate was best predicted by time to implementation of social distancing measures, hospital beds per 1000 individuals, percent population over 70 years, CT scanners per 1 million individuals, and (in countries with high population density) smoking prevalence. Conclusion: Our model predicted an increased CFR for countries that waited over 14 days to implement social distancing interventions after the 100th reported case. Smoking prevalence and percentage population over the age of 70 years were also associated with higher CFR. Hospital beds per 1000 and CT scanners per million were identified as possible protective factors associated with decreased CFR.


Subject(s)
Coronavirus Infections/mortality , Models, Statistical , Pneumonia, Viral/mortality , Age Distribution , Betacoronavirus , COVID-19 , Communicable Disease Control/trends , Hospital Bed Capacity , Humans , Internationality , Pandemics , SARS-CoV-2 , Smoking , Tomography Scanners, X-Ray Computed/supply & distribution
SELECTION OF CITATIONS
SEARCH DETAIL